Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Silicon is a common material of choice for semiconductor optics in the infrared spectral range, due to its low cost, well-developed high-volume manufacturing methods, high refractive index, and transparency. It is, however, typically ill-suited for applications in the visible range, due to its large absorption coefficient, especially for green and blue light. Counterintuitively, we demonstrate how ultra-thin crystalline meta-optics enable full-color imaging in the visible range. For this purpose, we employ an inverse design approach, which maximizes the volume under the broadband modulation transfer function of the meta-optics. Beyond that, we demonstrate polarization-multiplexed functionality in the visible. This is particularly important as polarization optics require high index materials, a characteristic often difficult to obtain in the visible.more » « less
-
Abstract Programmable photonic integrated circuits (PICs) consisting of reconfigurable on-chip optical components have been creating new paradigms in various applications, such as integrated spectroscopy, multi-purpose microwave photonics, and optical information processing. Among many reconfiguration mechanisms, non-volatile chalcogenide phase-change materials (PCMs) exhibit a promising approach to the future very-large-scale programmable PICs, thanks to their zero static power and large optical index modulation, leading to extremely low energy consumption and ultra-compact footprints. However, the scalability of the current PCM-based programmable PICs is still limited since they are not directly off-the-shelf in commercial photonic foundries now. Here, we demonstrate a scalable platform harnessing the mature and reliable 300 mm silicon photonic fab, assisted by an in-house wide-bandgap PCM (Sb2S3) integration process. We show various non-volatile programmable devices, including micro-ring resonators, Mach-Zehnder interferometers and asymmetric directional couplers, with low loss (~0.0044 dB/µm), large phase shift (~0.012 π/µm) and high endurance (>5000 switching events with little performance degradation). Moreover, we showcase this platform’s capability of handling relatively complex structures such as multiple PIN diode heaters in devices, each independently controlling an Sb2S3segment. By reliably setting the Sb2S3segments to fully amorphous or crystalline state, we achieved deterministic multilevel operation. An asymmetric directional coupler with two unequal-length Sb2S3segments showed the capability of four-level switching, beyond cross-and-bar binary states. We further showed unbalanced Mach-Zehnder interferometers with equal-length and unequal-length Sb2S3segments, exhibiting reversible switching and a maximum of 5 ($$N+1,N=4$$ ) and 8 ($${2}^{N},N=3$$ ) equally spaced operation levels, respectively. This work lays the foundation for future programmable very-large-scale PICs with deterministic programmability.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Silicon photonics has evolved from lab research to commercial products in the past decade as it plays an increasingly crucial role in data communication for next‐generation data centers and high‐performance computing. Recently, programmable silicon photonics has also found new applications in quantum and classical information processing. A key component of programmable silicon photonic integrated circuits (PICs) is the phase shifter, traditionally realized via thermo‐optic or free‐carrier effects that are weak, volatile, and power hungry. A non‐volatile phase shifter can circumvent these limitations by requiring zero power to maintain the switched phases. Previously non‐volatile phase modulation is achieved via phase‐change or ferroelectric materials, but the switching energy remains high (pico to nano joules) and the speed is slow (micro to milliseconds). Here, a non‐volatile III‐V‐on‐silicon photonic phase shifter based on a HfO2memristor with sub‐pJ switching energy (≈400 fJ), representing over an order of magnitude improvement in energy efficiency compared to the state of the art, is reported. The non‐volatile phase shifter can be switched reversibly using a single 100 ns pulse and exhibits excellent endurance over 800 cycles. This technology can enable future energy‐efficient programmable PICs for data centers, optical neural networks, and quantum information processing.more » « less
-
Abstract Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of$$\sim 10\,{fJ}/n{m}^{3}$$ . Remarkably, Sb2S3is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.more » « less
-
Programmable photonics play a crucial role in many emerging applications, from optical accelerators for machine learning to quantum information technologies. Conventionally, photonic systems are tuned by mechanisms such as the thermo-optic effect, free carrier dispersion, the electro-optic effect, or micro-mechanical movement. Although these physical effects allow either fast (>100 GHz) or large contrast (>60 dB) switching, their high static power consumption is not optimal for programmability, which requires only infrequent switching and has a long static time. Non-volatile materials, such as phase-change materials, ferroelectrics, vanadium dioxide, and memristive metal oxide materials, can offer an ideal solution thanks to their reversible switching and non-volatile behavior, enabling a truly “set-and-forget” programmable unit with no static power consumption. In recent years, we have indeed witnessed the fast adoption of non-volatile materials in programmable photonic systems, including photonic integrated circuits and free-space meta-optics. Here, we review the recent progress in the field of programmable photonics, based on non-volatile materials. We first discuss the material’s properties, operating mechanisms, and then their potential applications in programmable photonics. Finally, we provide an outlook for future research directions. The review serves as a reference for choosing the ideal material system to realize non-volatile operation for various photonic applications.more » « less
An official website of the United States government
